Abstract
The transport sector is a major energy-intensive and significant contributor to CO2 emissions. With heavy-duty internal combustion engine vehicles (HD-ICEVs) set to remain a primary mode of transport for goods and passengers, the European Union plans to implement CO2 emission rights starting in 2027 to address this issue. To mitigate CO2 emissions, on-board carbon capture technologies can be an innovative solution, but a comprehensive analysis from several perspectives must be carried out. To tackle the existing knowledge gap on this subject, this paper presents the techno-economic assessment of a CO2 capture and storage system hybridised with an organic Rankine cycle (CCS-ORC) integrated into an HD-ICEV whose technical ability has been previously demonstrated. In this paper, the capture installation based on temperature swing adsorption is designed for two engines with different displacement volumes, at varying carbon capture rates (CCR), and using three different sorbents. The size of the thermal devices is estimated as the determinant factor for the required space and the installation costs. The results show that the heat exchangers can achieve a minimum area density of 100 m2/m3, while the most significant temperature swing adsorption device obtained is scarcely 0.26 m3. The carbon abatement cost (CAC) obtained for the CCS-ORC system is less than 35 €/tCO2 at 100 % of CCR, and with an engine size greater than 18 and 21 L, the CAC of the CCS-ORC system is zero at 100 and 70 % of CCR, respectively. Furthermore, with a CO2 emissions right price above 71 €/tCO2, the projected payback of the initial investment of the CCS-ORC system is achieved in the lifespan of the HD-ICEV for all sorbents evaluated at 100 % of CCR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.