Abstract

It is arguable how much flexibility and efficiency from coupling different energy vectors through available technologies is exploited in current energy systems. In particular, in spite of the growing interest for the multi-energy concept, there are very few models capable of clearly explaining the benefits that can be derived from integration of complementary technologies such as cogeneration, electric heat pumps and thermal storage. In this light, this paper introduces a comprehensive analysis framework and a relevant unified and synthetic Mixed-Integer Linear Programming optimization model suitable for evaluating the techno-economic and environmental characteristics of different Distributed Multi-Generation (DMG) options. Each option's operational performance and flexibility to respond to electricity market signals are analysed in detail and assessed against the needed investment costs in different contexts. Numerical case studies focus on highlighting the flexibility benefits that can be gained in economic terms from multi-energy system integration in district heating (DH) applications. Detailed sensitivity analyses of different DMG configurations also clearly show what economic as well as environmental performance (at both global and local levels) can be expected in current and future scenarios when coupling different energy vectors and complementary technologies in a multi-energy context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.