Abstract

A Multi Objective based Fitness Function (MOFF) is proposed for the optimum planning of multiple Solar Distributed Generation (SDG) and DSTATCOM with radial distribution network (RDN) reconfiguration impact for techno-economic and environmental benefit improvement. The Adaptive-Particle Swarm Optimization (APSO) and Teaching-Learning Based Optimization techniques (TLBO) are employed to accomplish this work. In the proposed MOFF, the Active Power Loss (APLoss), Reactive Power Loss (RPLoss), System Voltage Deviation (SVD), Fault-Current Level-of-Line (FCLLine), and System Service Reliability (SSR) are considered. The economic-benefit measures along with Environmental Emissions Components (EEC) impact have also been considered in light of various system costs such as Fixed Capital Recovery Cost (FCRCost), Energy Loss Cost (ELCost) and Energy Not Supplied Cost (ENSCost). The novelty in the MOFF is the simultaneous consideration of FCLLine with APLoss, RPLoss, SVD, and SSR along with EEC impact calculation. The IEEE 69 and 118 bus RDN is considered with three case studies to demonstrate the proposed methodology's usefulness. The result analysis reveals that better performances can be obtained based on the considered MOFF in terms of environment-friendly techno-economic perspective, consistency, convergence, and computation time using TLBO rather than APSO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.