Abstract

This study evaluates the techno-economic feasibility of energy and phosphorus (P) fertilizer (PF) recovery from municipal sewage sludge (MSS) through incineration in new combustion plants. We evaluated the economic impact of five critical process design choices: (1) boiler type, (2) fuel (MSS mono-combustion/co-combustion with wheat straw), (3) production scale (10/100 MW), (4) products (heat, electricity, PF), and (5) ash destination. Aspen Plus modeling provided mass and energy balances of each technology scenario. The economic feasibility was evaluated by calculating the minimum selling price of the products, as well as the MSS gate fees required to reach profitability. The dependency on key boundary conditions (operating time, market prices, policy support) was also evaluated. The results showed a significant dependency on both energy and fertilizer market prices and on financial support in the form of an MSS gate fee. Heat was preferred over combined heat and power (CHP), which was feasible only on the largest scale (100 MW) at maximum annual operating time (8000 h/y). Co-combustion showed lower heat recovery cost (19–30 €/MWh) than mono-combustion (29–66 €/MWh) due to 25–35% lower energy demand and 17–25% higher fuel heating value. Co-combustion also showed promising performance for P recovery, as PF could be recovered without ash post-treatment and sold at a competitive price, and co-combustion could be applicable also in smaller cities. When implementing ash post-treatment, the final cost of ash-based PF was more than four times the price of commercial PF. In conclusion, investment in a new combustion plant for MSS treatment appears conditional to gate fees unless the boundary conditions would change significantly.

Highlights

  • Phosphorus (P) is a critical and irreplaceable element in human nutrition

  • Regarding ash residues and P production, the results show that mono-combustion yields a higher output of P per ton of fuel than co-combustion

  • Techno-economic analysis was performed to evaluate the feasibility of energy and

Read more

Summary

Introduction

The primary P resource, phosphate rock, is limited and geographically concentrated to a few regions, and the dependency of agriculture on mineral P causes increases in fertilizer price and uncertainty in the P market [1,2,3]. MSS, the solid waste residue of wastewater treatment plants, is considered one of the most promising P-rich sources due to both high P concentration and large volumes [8,9]. Land application and composting of MSS are simple P recovery methods and the dominant practice in Europe for disposal or recovery [12].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call