Abstract

To enable the widespread exploitation of intermittent, low-cost, and non-dispatchable renewable energy technologies, energy storage plays a key role in providing the required flexibility. This study introduces maps of optimal combination of Thermal Energy Storage (TES) and power cycles, supporting decision-making in power-to-heat-to-power applications. These maps span a wide temperature range from 200 to 1200 °C and are proposed for different charging costs, installed capacities, and storage durations. For thermal-to-electricity reconversion, this study explores power blocks including steam Rankine cycle, supercritical CO2 (sCO2) Brayton cycle, Organic Rankine Cycle (ORC), and combined gas turbine with Rankine and sCO2. Results highlight that, in a grid-based plant with a 50 EUR/MWh charging cost, the most cost-effective pairing involves sCO2 cycles with recompression and intercooling, with particle TES at 600-800 °C. Air packed-bed suits scenarios where TES contributes significantly to capital costs or involves low charging costs. Molten salt TES is the optimal choice when the design temperatures align with salt temperature limitations. Particle TES proves cost-effective across a broad temperature range and scales (10 to 200 MW). For solar-based systems, the integration of molten salt TES with simple sCO2 recuperated cycles demonstrates market potential for southern European locations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.