Abstract
The application of photovoltaic (PV) power to split water and produce hydrogen not only reduces carbon emissions in the process of hydrogen production but also helps decarbonize the transportation, chemical, and metallurgical industries through P2X technology. A techno-economic model must be established to predict the economics of integrated PV–hydrogen technology at key time points in the future based on the characteristics, variability, and uncertainties of this technology. In this study, we extracted the comprehensive technical factors (including PV tracking system coefficient, PV conversion efficiency, electrolyzer efficiency, and electrolyzer degradation coefficient) of an integrated PV–hydrogen system. Then, we constructed a PV hydrogen production techno-economic (PVH2) model. We used the levelized cost of hydrogen production (LCOH) method to estimate the cost of each major equipment item during the project lifetime. We combined the PVH2 and learning curve models to determine the cost trend of integrated PV–hydrogen technology. We developed a two-dimensional Monte Carlo approach to predict the variation interval of LCOH for PV–hydrogen projects in 2030 and 2050, which described the current technology variability with variable parameters and the uncertainty in the technology advancement with uncertain parameters. The results showed that the most critical factors influencing LCOH are PV conversion efficiency and the capital cost of the electrolyzer. The LCOH of PV to hydrogen in China will drop to CNY 18–32/kg by 2030 and CNY 8–18/kg by 2050. The combination of a learning curve model and a Monte Carlo method is an effective tool to describe the current variability in hydrogen production technologies and the uncertainty in technological progress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.