Abstract

This study presents a detailed design, economic, sensitivity and uncertainty analysis for establishing a hydropower based green ammonia plant for use in urea manufacturing in the context of Nepal. The electrolyzer plant for producing hydrogen was simulated with the help of DWSIM while the air separation and ammonia synthesis units were simulated with the help of Aspen Plus for producing 1245 ton/day of ammonia to meet the annual urea demand of Nepal. The capitalized cost of the electrolyzer, air separation and the ammonia synthesis unit of this size were calculated to be 26 million, 7 million and 9 million USD/year respectively. The levelized cost of hydrogen (H2) and ammonia (NH3) were found to be 3602 and 826 USD/ton respectively. Economic profitability analysis showed profitability of the plant with ROI and IRR of 38% and 26% respectively with a payback period of three years after operation. The sensitivity analysis showed strong sensitivity on the utility (electricity) cost for both the electrolyzer and ammonia synthesis unit which presents a strong opportunity for Nepal. The levelized cost for H2 and NH3 varied between 2845 USD/ton and 4361 USD/ton and 634 USD/ton and 1018 USD/ton respectively for ±30% variation in the utility (electricity) cost. Uncertainty analysis using Monte Carlo method showed the possible minimum levelized cost of H2 and NH3 to be 2340 USD/ton and 418 USD/ton respectively. This study illustrates the potential of hydropower based ammonia synthesis for urea manufacturing and provides an important baseline value for policymakers to make investment decisions and to formulate policies for this pathway of production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call