Abstract

Growing concern on global warming directly related to CO2 emissions is steering the implementation of carbon capture and storage (CCS). With Malaysia having an estimated 37 Tscfd (Trillion standard cubic feet) of natural gas remains undeveloped in CO2 containing natural gas fields, there is a need to assess the viability of CCS implementation. This study performs a techno-economic analysis for CCS at an offshore natural gas field in Malaysia. The framework includes a gas field model, revenue model, and cost model. A techno-economic spreadsheet consisting of Net Present Value (NPV), Payback Period (PBP), and Internal Rate of Return (IRR) is developed over the gas field’s production life of 15 years for four distinctive CO2 capture technologies, which are membrane, chemical absorption, physical absorption, and cryogenics. Results predict that physical absorption solvent (Selexol) as CO2 capture technology is most feasible with IRR of 15% and PBP of 7.94 years. The output from the techno-economic model and associated risks of the CCS project are quantified by employing sensitivity analysis (SA), which indicated that the project NPV is exceptionally sensitive to gas price. On this basis, the economic performance of the project is reliant on revenues from gas sales, which is dictated by gas market price uncertainties.

Highlights

  • Anthropogenic carbon dioxide (CO2 ) emissions in the atmosphere are significantly increasing and critically impacting global climate

  • This study focuses on the capture step as it contributes to the the project is implemented using various CO2 capture technology options, assessing the effects, highest cost in carbon capture and storage (CCS) chain

  • For the economically attractive since there are many other factors that may directly influence project decision gas price, the range of ±US Dollar (USD) 1.0 Million/MMBtu was selected as it reflects the gas price trend for the making

Read more

Summary

Introduction

Anthropogenic carbon dioxide (CO2 ) emissions in the atmosphere are significantly increasing and critically impacting global climate. There is an urgent need to gauge and combat its effect on global climate change. 33,890.8 MT (metric tonne) of CO2 emission worldwide and the value was driven by the high energy demand. Recently in the year 2018, the global energy consumption grew at a rate of 2.9%, which is almost twice its 10-year average of 1.5% per year that is the fastest trend since the year 2010. Its production increased by 5.2% to 136,594 Tscf (Trillion standard cubic feet) while its consumption rose by 5.3% to 135.92 Tscf, which is one of the fastest rates of increase since the year

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.