Abstract

Guatemala has made significant progress in improving its electrical infrastructure in recent years. However, most studies and efforts have focused on developing policies that directly benefit the national electrical market, which may cause a lack of attention toward solutions that cater to low-consumption cases, such as residential and rural communities. Therefore, it is vital to consider the needs of these communities while developing policies and solutions to ensure that they also have access to reliable and affordable sources of electricity. This study analyzes the cost-effectiveness and technical performance of a hybrid renewable energy system (HRES) that can meet the power needs of low electricity-consuming households in a rural region of Guatemala. The proposed HRES comprises a hybrid photovoltaic-wind turbine-bio generator coupled to battery storage, which caters to the energy needs of a typical household in Alta Verapaz, a rural area in Guatemala with limited electricity access (64.61%). The research considers three scenarios: I) basic electricity needs for the household, II) increased electricity needs for cooking and water heating, and III) future electricity demand in 2050, considering the role of the renewable energy market. Based on Scenario I, the cost-effective solution is a PV system with a capacity of 5.39 kW and 29 kWh battery capacity, with a cost of energy (COE) of 0.893 $/kWh. In Scenario II, a hybrid solution consisting of a 2.46 kW PV system, a 2.20 kW bio-generator, and 16 kWh battery capacity o, results in a COE of 0.605 $/kWh. Scenario III suggests a hybrid system, including 7.90 kW of PV, 3.30 kW bio-generator, and 14 kWh battery to meet the expected energy demand in 2050. COE for this solution is estimated to be 0.297 $/kWh. Considering the declining costs of renewable energy technologies by 2050, the findings highlight that the proposed HRES can be an affordable solution for low-consumption scenarios such as off-grid areas in Guatemala.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.