Abstract

Pineapple production around the world creates large amounts of wasted organic residue, mainly in the form of pineapple leaves. Current management practices consist of in situ decomposition or in situ burning, both of which cause the proliferation of flies and air pollution, respectively. The research conducted aims to develop a utilization process for this residue. Considering that pineapple leaves are rich in carbohydrates and other nutrients, a simple biological process involving a two-step procedure for juice production and ethanol fermentation has been developed to convert the leaves into renewable fuel and spent yeasts for animal feed. The liquid fraction extracted from the leaves is used as the nutrients to culture yeast, Kluyveromyces marxianus, for ethanol and yeast protein production. In Costa Rica, one of the major pineapple-producing countries in the world, the studied process can produce 92,708 and 64,859 tons of bioethanol and spent yeast per year, respectively, from its 44,500 hectares of pineapple plantation. This techno-economic analysis indicates that a regional biorefinery with the capacity to produce 50,000 metric tons per year of ethanol could have a short payback period of 4.72 years. The life cycle analysis further demonstrates the advantages of the studied biorefining concept over the current practice of open burning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.