Abstract
The paper contains results of development and study of iterative techniques for static anal-ysis of quad-orifice electrohydraulic steering engine, namely, techniques for calculating its static characteristics (force and velocity characteristics) taking into account parameters of local hydraulic resistance parameters, making it possible to do analysis at various values of power supply voltage and temperature. The proposed techniques are based on solving systems of non-linear algebraic and transcendental equations of math models of the steering actuator describing its static operational modes. Taken as a basis for development of techniques for static analysis of the steering actuator are methods of integrated simulation of physical properties of working fluids of steering actuators and hydraulic drives, iterative methods for calculating parameters of working fluids flow in connecting lines, channels, flow-through elements and valves, results of studies of operating processes for steering actuator constituent elements, as well as a modification of the Seidel method for solving a system of non-linear algebraic and transcendental equations. The paper provides the results of testing the developed static analysis iterative techniques of such a steering actuator. Key words: static analysis, electrohydraulic steering actuator, non-linear algebraic and transcendent equations
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.