Abstract

This paper presents techniques for Fock matrix construction that are designed for high performance on shared and distributed memory parallel computers when using Gaussian basis sets. Four main techniques are considered. (1) To calculate electron repulsion integrals, we demonstrate batching together the calculation of multiple shell quartets of the same angular momentum class so that the calculation of large sets of primitive integrals can be efficiently vectorized. (2) For multithreaded summation of entries into the Fock matrix, we investigate using a combination of atomic operations and thread-local copies of the Fock matrix. (3) For distributed memory parallel computers, we present a globally accessible matrix class for accessing distributed Fock and density matrices. The new matrix class introduces a batched mode for remote memory access that can reduce the synchronization cost. (4) For density fitting, we exploit both symmetry (of the Coulomb and exchange matrices) and sparsity (of 3-index tensors) and give a performance comparison of density fitting and the conventional direct calculation approach. The techniques are implemented in an open-source software library called GTFock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.