Abstract
Three-dimensional bioprinting leverages computer-aided design to construct tissues and organs with specialized bioinks. A notable biomaterial for this purpose is chitosan, a natural polysaccharide sourced from crustacean exoskeletons. Chitosan's biocompatibility, biodegradability, non-toxicity, and ability to promote cell adhesion and proliferation make it an excellent component for bioinks. Initially, the rheological properties of chitosan presented challenges for its use in bioprinting. Enhancements in its printability and stability were achieved by integrating it with other natural or synthetic polymers, facilitating its successful application in bioprinting. Chitosan-based bioinks are particularly promising for controlled drug delivery. Incorporating pharmaceuticals directly into the bioink enables the printed structures to serve as localized, sustained-release systems. This approach offers multiple advantages, including precise drug delivery to targeted disease sites, increased therapeutic efficiency, and reduced systemic side effects. Moreover, bioprinting allows for the customization of drug delivery mechanisms to meet individual patient requirements. Although there have been considerable advancements, the use of chitosan-based bioinks in drug delivery is still an emerging field. This review highlights chitosan's essential role in both systemic and localized drug delivery, underscoring its significance and discussing ongoing trends in its application for pharmaceutical purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.