Abstract

When the fourth generation for wireless communication networks was developed, it was upgraded to provide both enhanced coverage area and higher data rates to every mobile user with lower latency. However, wireless communication system for the next-generation network will need to challenge new requirement with a greater diversity of application requirements such as ultra-high data rate, ultra-low latency, flexible use of spectrum and spectrum sharing, and battery-powered sensors that needs extremely low energy consumption, and some other control applications that want a very short round trip time (RTT). Due to problems with orthogonal frequency division multiplexing (OFDM) and next-generation demands, OFDM is not used as a promising waveform for next-generation wireless communication network. In these circumstances, alternative multiplexing schemes such as generalized frequency division multiplexing (GFDM), due to flexibility in pulse shape and single cyclic prefix in a multi-path system, GFDM is becoming common every day, making it eligible for 5G wireless technologies. GFDM looks as generalization of OFDM technique. But one of the common drawbacks of every multicarrier system is their high peak to average power ratio (PAPR). The main effect of strong PAPR is instability in the analog to digital converter (ADC) and digital to analog converter (DAC), decreased its performance and raised costs. A PAPR reduction technique such as clipping and filtering that greatly improves the efficiency compared to the initial GFDM signal PAPR. Overall peak re-growth can be reduced by using repeated clip and filter operations. Simulation is performed for this scheme to evaluate this system’s PAPR output for different values of roll-off variables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call