Abstract
ABSTRACTSurface‐fouling tendencies of raw light steepwater (LSW) and membrane‐filtered light steepwater (FSW) from corn wet‐milling were studied using an annular fouling probe. The probe contained a heated surface to simulate the surface temperature of an evaporator. The heated region caused a fraction of solids in the steepwater to adhere to the surface, thus fouling the probe over time. FSW samples were prepared by filtering LSW using a microfiltration membrane with a nominal pore size of 0.1 μm. Fouling tendencies of both samples were established at an initial probe wall temperature of 99°C. Batches (30 L) were circulated through the fouling probe until the inner surface temperature of the probe reached 200°C. Temperature and power supplied to the probe were measured over time and used to calculate fouling resistance and rate of fouling. Measurement of maximum fouling resistance and fouling rate had a coefficient of variation (COV) of 5.1 and 7.4%, respectively. Maximum fouling resistances attained over a 12‐hr period were 0.36 and 0.049 m2 °C/kW for LSW and FSW, respectively. Average rates of fouling were 4.53 × 10‐4 and 0.82 × 10‐4 m2 °C/kW/min for LSW and FSW, respectively, showing an 80% decrease in fouling rate using microfiltration to remove 19% of solids.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.