Abstract
Problems related to the temporal stability of laminar viscous incompressible flows in plane channels with ribbed walls are formulated, justified, and numerically solved. A new method is proposed whereby the systems of ordinary differential and algebraic equations obtained after a spatial approximation are transformed into systems of ordinary differential equations with a halved number of unknowns. New algorithms that effectively calculate stability characteristics, such as the critical Reynolds numbers, the maximum amplification of the disturbance kinetic energy density, and optimal disturbances are described and substantiated. The results of numerical experiments with riblets similar in shape to those used in practice are presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational Mathematics and Mathematical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.