Abstract

Abstract. Jet engine power loss due to ice particle accumulation is a recognized aviation hazard occurring in cloud conditions difficult to forecast or visually recognize. High-altitude cirrus clouds can have ice particle concentrations high enough to be dangerous; therefore, pilots must be informed when aircraft enter such environments. One approach to determining ice particle concentration is an onboard lidar system. Concurrent lidar measurements are compared to backscatter coefficients derived from particle size distributions obtained from wing-mounted, in situ probes during four case studies consisting of sixty-second flight segments at different temperatures: +7 and +4 ∘C for water droplet analysis, and −33 and −46 ∘C for ice particle analysis. Backscatter coefficients derived from external cloud probes (ECP) are correlated (0.91) with measurements by an airborne lidar system known as the Optical Ice Detector (OID). Differences between OID and ECP backscatter coefficients range from less than 1 to over 3 standard deviations in terms of uncertainties. The backscatter coefficients are mostly in agreement for liquid clouds and are in disagreement for the −33 and −46 ∘C cases, with ECP-derived backscatter coefficients lower than the OID for three out of the four cases. Measurements over four 60 s research flight segments show that measured total water content is correlated (0.74) with the OID backscatter coefficient, which indicates that the OID is a useful instrument for determining ice particle concentrations over a broad range of environments, including at ice water contents as low as 0.02 g m−3. Additionally, concurrent measurements from cloud imaging probes and the OID provide improved knowledge of cloud conditions, which may help in understanding cloud processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call