Abstract

Cardiac arrest poses a large public health burden. Acute kidney injury (AKI) is an adverse marker in survivors of cardiac arrest following the return of spontaneous circulation (ROSC) after successful cardiopulmonary resuscitation. Conversely, recovery of kidney function from AKI is a predictor of favorable neurological outcomes and hospital discharge. However, an effective intervention to prevent kidney damage caused by cardiac arrest after ROSC is lacking, suggesting that additional therapeutic strategies are required. Renal hypoperfusion and reperfusion are two pathophysiological mechanisms that cause AKI after cardiac arrest. Animal models of ischemia-reperfusion-induced AKI (IR-AKI) of both kidneys are comparable with patients with AKI following ROSC in a clinical setting. However, IR-AKI of both kidneys is technically challenging to analyze because the model is associated with high mortality and wide variation in kidney damage, which may affect the analysis. Lightweight mice were chosen, placed under general anesthesia with isoflurane, subjected to surgery with a dorsolateral approach, and their body temperature maintained during operation, thereby reducing tissue damage and establishing a reproducible acute renal IR-AKI research protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call