Abstract

The amount of tin(II) required for adequate reduction, complexation, and stability of technetium Tc 99m pertechnetate in radiopharmaceutical kits, and methods of preventing the loss of tin(II) during formulation of these lyophilized kits are investigated. Tin(II) loss from stannous chloride solutions was studied under several conditions, including room air versus nitrogen atmospheres, during vial filling in a laminar-flow hood with samples frozen on dry ice versus samples at room temperature, during lyophilization, and during storage under refrigerated, ambient, and elevated temperatures. Various amounts of stannous chloride, ranging from 5 to 1000 microgram/ml, were used in formulating sodium pertechnetate Tc 99m kits containing 100 mCi technetium Tc 99m and 0.4 microgram total technetium. Samples were removed at various times; hydrolyzed technetium, pertechnetate, and technetium Tc 99m pyrophosphate were isolated on instant thin-layer chromatography-silica gel and quantified with a scintillation counter. The time necessary to deoxygenate distilled water by nitrogen purging was measured. Several sources of stannous chloride were assayed for tin(II) content. Tin(II) loss occurs rapidly in solution (15% in one hour) unless continuously protected with nitrogen, and during vial filling in a laminar-flow hood unless frozen with dry ice. No substantial loss of tin(II) was detected during lyophilization or during storage of lyophilized product at any of the three temperatures. A minimum of 400 microgram tin(II) was required to provide 90% technetium Tc 99m pyrophosphate at six hours after preparation. Adequate deoxygenation of small quantities (450 ml) of water was accomplished in less than one hour. Some stannous chloride salts were highly oxidized in the dry state, and only high-purity elemental tin wire gave acceptable yields of tin(II).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.