Abstract

Joint is a crucial factor affecting rock mass stability, but its complex morphology brings challenges to its research. The three-dimensional (3D) scanning technology can obtain the point cloud digital model of the object without contact. The research is to introduce this technology into the analysis of joint characteristics. For this purpose, firstly, cloud plane inclination of joint 3D scanning data is solved by constructing translation matrix M and rotation matrix R. Then, the appropriate sampling interval for 3D scanning technology to analyze the joint morphology is determined by parametric analysis. Next, by integrating 3D scanning, 3D printing, and 3D carving technologies, the two fabrication methods of joint models with the same natural morphology and lithology are proposed, which overcomes the problem of insufficient joint samples in the experiment. Finally, based on the 3D scanning digital model, the recognition method of the potential shear region and the measurement technique of shear failure characteristics are presented. This research provides a new way to analyze the joint morphology and shear mechanism, and is also conducive to the popularization of 3D scanning technology in geotechnical engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call