Abstract

In this paper, we study capacitated dynamic lot-sizing problems with or without backorders, under the assumption that production costs are linear, that is, there are no setup costs. These two dynamic lot-sizing problems (with or without backorders) are minimum-cost flow problems on an underlying network that possess a special structure. We show how the well-known successive shortest-path algorithm for the minimum-cost flow problem can be used to solve these problems in O(n2) time, where n is the number of periods in the dynamic lot-sizing problems, and how, with the use of dynamic trees, we can solve these problems in O(n log n) time. Our algorithm also extends to the dynamic lot-sizing problem with integer variables and convex production costs with running time O(n log n log U), where U is the largest demand value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.