Abstract

The characterization of workers’ exposure to airborne metallic ultrafine particles (UFP) has been an increasing issue because of their effects on health, and as many activities are potentially concerned such as welding, oxy-cutting or 3D printing. Determining the particle size distribution of such an aerosol provides a real contribution to the understanding of UFP exposures and associated health effects, as it is directly related to their penetration in the respiratory tract. In this context, it is proposed to optimize the preparation of collection substrates of cascade impactors of airborne metallic UFP. The experimental results confirm that the collection substrates have to be prepared beforehand by coating them with a high-vacuum-resistant silicone grease. The results highlight that this grease has to be preliminarily dissolved in a heptane-based solution with a mass ratio grease-solvent of 7.5%, and then deposited on the substrate with a target height of 9 μm. Applying this protocol ensures a reproducible and representative determination of the particle size distribution, allowing the phenomena of particle bouncing and reentrainment to be significantly reduced. It is also shown that coated collection substrates remain stable for several months in terms of mass, and that the samples collected remain stable during transport thanks to the improvement of particle cohesion on the coated membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.