Abstract

The complementary relationship between areal and potential evapotranspiration takes into account the changes in the temperature and humidity of the air as it passes from a land environment to a lake environment. Minor changes convert the latest version of the complementary relationship areal evapotranspiration (CRAE) models to a complementary relationship lake evaporation (CRLE) model. The ability of the CRLE model to produce reliable estimates of annual lake evaporation from monthly values of temperature, humidity and sunshine duration (or global radiation) observed in the land environment with no locally optimized coefficients is tested against comparable water-budget estimates for 11 lakes in North America and Africa. Maps of annual lake evaporation and annual net reservoir evaporation (i.e. the difference between lake evaporation and areal evapotranspiration) for the part of Canada to the east of the Pacific Divide and for the southern U.S.A. are presented. An approximate routing technique, which takes into account the effects of depth and salinity on the seasonal pattern of monthly lake evaporation, is formulated and tested against comparable water-budget estimates for 10 lakes in North America and Africa. The results indicate that the CRLE model, with its associated routing technique, is much superior to the other techniques in current use that rely on climatological or pan observations in the land environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call