Abstract
Water is the reference medium for radiation therapy dosimetry, but for film dosimetry it is more practical to use a solid phantom. As the composition of solid phantoms differs from that of water, the energy dependence of film exposed within solid phantoms may also differ. The energy dependence of a radiochromic film for a given beam quality Q (energy for monoenergetic beams) has two components: the intrinsic energy dependence and the absorbed-dose energy dependence f(Q), the latter of which can be calculated through a Monte Carlo simulation of radiation transport. The authors used Monte Carlo simulations to study the influence of the phantom material on the f(Q) of the EBT3 radiochromic film (Ashland Specialty Ingredients, Wayne, NJ) for photon beams with energies between 3 keV and 18 MeV. All simulations were carried out with the general-purpose Monte Carlo code penelope 2011. The geometrical model consisted of a cylindrical phantom, with the film positioned at different depths depending on the initial photon energy. The authors simulated monoenergetic parallel photon beams and x-ray beams from a superficial therapy system. To validate their choice of simulation parameters, they also calculated f(Q) for older film models, EBT and EBT2, comparing with published results. In addition to water, they calculated f(Q) of the EBT3 film for solid phantom materials commonly used for film dosimetry: RW1 and RW3 (PTW-Freiburg, Freiburg, Germany), Solid Water (Gammex-RMI, Madison, WI), and PMMA. Finally, they combined their calculated f(Q) with published overall energy response data to obtain the intrinsic energy dependence of the EBT3 film in water. The calculated f(Q) for EBT and EBT2 films was statistically compatible with previously published data. Between 10 keV and 18 MeV, the variation found in f(Q) of the EBT3 film for water was within 2.3%, with a standard statistical uncertainty less than 1%. If the quantity dose-to-water in the phantom is considered, which is the common practice in radiation dosimetry, the maximum difference of energy dependence for the solid phantoms with respect to water is about 6%, at an energy of 50 keV. The EBT3 film shows a reasonably constant absorbed-dose energy dependence when irradiated in water. If the dose-to-water in the phantom is considered, the maximum difference of EBT3 film energy dependence with the solid phantoms studied with respect to water is about 6% (at an energy of 50 keV). The reported overall energy dependence of the EBT3 film in water at energies below 100 keV is mainly due to the intrinsic energy dependence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.