Abstract
Mid-infrared spectroscopy (MIRS) is widely used to collect milk phenotypes at the population level. The aim of this study was to test the ability of the uninformative variable elimination (UVE) method to select and remove uninformative wavelength variables before partial least squares (PLS) analysis. Milk titratable acidity (TA) and Ca content were used as examples to illustrate the procedure. Reference values and MIRS spectra (n=208) of TA and Ca were retrieved from an existing database. The data set was randomly divided into calibration (70% of data) and validation (30% of data) sets, and PLS analysis was carried out before and after the UVE procedure. The UVE procedure selected 244 and 113 informative wavelengths for TA and Ca, respectively, from a total of 1,060. The elimination of uninformative variables before PLS regression increased the accuracy of MIRS prediction models, and it substantially reduced the computation time. Dealing with fewer variables is expected to enhance the efficiency of MIRS models to predict phenotypes at population level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.