Abstract

Advances in high-throughput genotyping technologies have afforded researchers the opportunity to study ever-increasing numbers of SNP in animal genomes. However, many studies encounter difficulties in obtaining sufficient quantities of high-quality DNA for such analyses, particularly when the source biological material is limited or degraded. The recent development of in vitro whole-genome amplification approaches has permitted researchers to circumvent these challenges by increasing the amount of usable DNA in normally small-quantity samples. Here, we assess the performance of whole-genome amplification products generated from ovine genomic DNA using a high-throughput SNP genotyping platform, the newly developed Illumina ovineSNP50 BeadChip. Our results demonstrate a high genotype call rate for conventional genomic DNA and whole-genome amplified genomic DNA. The data also reveal an exceptionally high concordance rate ( > or = 99%) between the genotypes generated from whole-genome amplified products and their conventional genomic DNA counterparts. This study supports the use of whole-genome amplification as a viable solution for the analysis of high-density SNP genotypic data using compromised or limited starting material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call