Abstract

Freemartinism is the most common type of disorder of sex development in cattle. It leads to sterility in the female co-twin in heterosexual twin pregnancy, and is thus a serious problem in cattle production. The incidence of freemartin syndrome is directly dependent on the prevalence of twinning, which has increased in dairy cattle populations in recent years. Thus, early and rapid identification of freemartins is needed to reduce economic loss. Of the various methods used to diagnose this condition, identifying the XX and XY cell lines in blood samples using cytogenetic techniques is the gold standard; however, this technique is time consuming. Faster and more reliable techniques are thus being sought. Droplet digital PCR (ddPCR) is a third-generation PCR method and it has not previously been used to detect XX/XY leukocyte chimerism in cattle. The aim of the present study was to verify the usefulness of ddPCR to detect and quantify leukocyte chimerism in this species. The X and Y copy numbers were estimated by identifying the copy numbers of 2 genes located on the sex chromosomes: amelogenin X-linked (AMELX) on the X chromosome and amelogenin Y-linked (AMELY) on the Y chromosome. In the first step, we performed ddPCR on samples prepared from female DNA mixed with male DNA in serially diluted proportions. We determined that the sensitivity of this method was sufficient to detect a low-frequency (<5%) cell line. In the next step, ddPCR was used to analyze 22 Holstein Friesian freemartins. Cytogenetic evaluation of these cases revealed leukocyte chimerism; the proportion of XX and XY metaphase spreads varied over a wide range, from XX (98%)/XY (2%) to XX (4%)/XY (96%). The use of ddPCR facilitated the precise estimation of the ratio of the copy number of X to Y sex chromosomes. In all cases, the XX/XY chimerism detected by cytogenetic analysis was confirmed using ddPCR. The method turned out to be very simple, accurate, and sensitive. In conclusion, we recommend the ddPCR method for fast and reliable detection of XX/XY leukocyte chimerism in cattle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call