Abstract
Analyzing Capacitated Two-Echelon Systems with Permutation-Dependent Separability Capacitated multiechelon systems are common in practice due to the escalating costs of labor and advanced manufacturing technology. However, identifying the optimal replenishment policies for such systems is a largely open area of research due to the intrinsic complexity, especially when there is an upstream bottleneck. In “A Permutation-Dependent Separability Approach for Capacitated Two-Echelon Inventory Systems”, Shen, Yu, and Huh propose a new approach, that is, permutation-dependent separability, to tackle a capacitated two-echelon system in which the capacity of upstream stage can be the bottleneck. They show that the value function for the capacitated two-echelon system in each period is permutation-dependent separable, and that for each echelon, a permutation-dependent echelon base stock policy is optimal. The authors also develop efficient solution procedures on how to obtain the optimal policy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.