Abstract

In recent years, several approximation methods have been proposed for the choice network revenue management problem. These approximation methods are proposed because the dynamic programming formulation of the choice network revenue management problem is intractable even for moderately sized instances. In this paper, we consider three approximation methods that obtain upper bounds on the value function, namely, the choice deterministic linear program (CDLP), the affine approximation (AF), and the piecewise-linear approximation (PL). It is known that the piecewise-linear approximation bound is tighter than the affine bound, which in turn is tighter than CDLP. In this paper, we prove bounds on how much the affine and piecewise-linear approximations can tighten CDLP. We show (i) the gap between the AF and CDLP bounds is at most a factor of [Formula: see text], where [Formula: see text] are the resource capacities, and (ii) the gap between the piecewise-linear and CDLP bounds is within a factor of 2. Moreover, we show that these gaps are essentially tight. Our results hold for any discrete-choice model and do not involve any asymptotic scaling. Our results are surprising because calculating the AF bound is NP-hard and CDLP is tractable for a single-segment multinomial logit model; our result implies that if a firm has all resource capacities of 100, the gap between the two bounds, however, is at most 1.01.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.