Abstract
This paper presents a partitioning algorithm for recursively computing the steady state probabilities for a finite, irreducible Markov chain or a Markov process. The algorithm contains a matrix reduction routine, followed by a vector enlargement routine. The matrix reduction routine repeatedly partitions the transition matrix for the Markov chain, creating a sequence of smaller, reduced transition matrices. The vector enlargement routine computes the components of the steady state probability vector by starting with the smallest reduced matrix and working sequentially toward the original transition matrix. This procedure produces an exact solution for the steady state probabilities. No special structure is required for the Markov chain. In theory, the procedure imposes no limit on the size of the largest Markov chain to which the partitioning algorithm can be applied. In practice, roundoff errors may require modifications to the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.