Abstract

Abstract. This study presents a new instrument called a low-cost albedometer (LCA) composed of two illuminance sensors that are used to measure in situ incident and reflected illuminance values on a daily timescale. The ratio between reflected vs. incident illuminances is called the albedo index and can be compared with actual albedo values. Due to the shape of the sensor, the direct radiation for zenith angles ranging from 55 to 90∘ is not measured. The spectral response of the LCA varies with the solar irradiance wavelengths within the range 0.26 to 1.195 µm, and the LCA detects 85 % of the total spectral solar irradiance for clear sky conditions. We first consider the theoretical results obtained for 10 different ice and snow surfaces with clear sky and cloudy sky incident solar irradiance that show that the LCA spectral response may be responsible for an overestimation of the theoretical albedo values by roughly 9 % at most. Then, the LCA values are compared with two “traditional” albedometers, which are CM3 pyranometers (Kipp & Zonen), in the shortwave domain from 0.305 to 2.800 µm over a 1-year measurement period (2013) for two sites in a tropical mountainous catchment in Bolivia. One site is located on the Zongo Glacier (i.e., snow and ice surfaces) and the second one is found on the crest of the lateral moraine (bare soil and snow surfaces), which present a horizontal surface and a sky view factor of 0.98. The results, at daily time steps (256 days), given by the LCA are in good agreement with the classic albedo measurements taken with pyranometers with R2=0.83 (RMSD = 0.10) and R2=0.92 (RMSD = 0.08) for the Zongo Glacier and the right-hand side lateral moraine, respectively. This demonstrates that our system performs well and thus provides relevant opportunities to document spatiotemporal changes in the surface albedo from direct observations at the scale of an entire catchment at a low cost. Finally, during the period from September 2015 to June 2016, direct observations were collected with 15 LCAs on the Zongo Glacier and successfully compared with LANDSAT images showing the surface conditions of the glacier (i.e., snow or ice). This comparison illustrates the efficiency of this system to monitor the daily time step changes in the snow and ice coverage distributed on the glacier. Despite the limits imposed by the angle view restrictions, the LCA can be used between 45∘ N and 45∘ S during the ablation season (spring and summer) when the melt rate related to the albedo is the most important.

Highlights

  • Albedo is a key variable controlling the surface energy balance through the shortwave radiation budget

  • In this study we developed, evaluated, and tested a new lowcost albedometer (LCA) comprised of two HOBO® Pendant Temperature/Light Data Loggers measuring downward and upward illuminances

  • The measurements of the field of view of the LCA in the laboratory with a goniometer showed that the LCA cannot capture the radiation for zenith angles ranging from 55 to 90◦ (±2◦)

Read more

Summary

Introduction

Albedo is a key variable controlling the surface energy balance through the shortwave radiation budget. These 10 different surface types are used below to calculate the theoretical uncertainty of the LCA measurements. The LCA albedo index, Albedoindex (-), is the ratio between the reflected and incident LCA radiation fluxes for each type of snow and ice surface and for cloudy or clear sky conditions (Eq 3) This LCA albedo index is compared with the theoretical broadband albedo when we consider the spectral variations. This is explained by the response of the LCA based on the wavelength, which is null for the 1.20–2.30 μm range (see Fig. 2)

Applications on a high tropical glacierized catchment in Bolivia
July 2016
Findings
Discussion and conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.