Abstract

A new transducer for measuring normal and shear stress in physical modelling was designed and tested. From many methods of contact stress measurements, a local approach based on pin load cell was chosen. The sensing element employed was a stack of piezoelectric plates which measured three components of the force directly. The design process included a study of piezoelectricity in various materials, designing a prototype transducer and choosing an appropriate electronic circuit. The piezoelectric stack and the whole transducer were tested using a calibration rig capable of applying the normal and tangential force independently. Calibration results confirmed the suitability of the adopted concept and provided guidelines for proper design of the final transducer. In particular, a new calibration procedure was proposed which took into account interactions between the measured force components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.