Abstract

This paper presents the behavior of ordered mesoporous carbon (OMC)-supported catalysts as anodes for direct methanol fuel cells (DMFC), fed with an aqueous methanol solution. OMC samples were prepared by the nanocasting method from a polymerized furan resin using mesoporous silica as a template. Pt and PtRu nanoparticles were supported on OMC with high dispersion, the particle size being 2.4 nm at PtRu loading of 15 wt.%. The resulting catalysts were analyzed using carbon monoxide stripping voltammetry, cyclic voltammetry, and chronoamperometry in three-electrode experiments and recording cell voltage vs. current density curves in practical DMFC. It was found that PtRu-catalyzed technical electrodes exhibited good activity towards methanol electrooxidation in half-cell experiments under fuel-cell-relevant conditions. Specifically, Pt85Ru15/OMC catalyst showed the highest catalytic enhancement compared to Pt/OMC for the steady-state electrooxidation of methanol at 60 °C and 0.5 V, by a factor of 22 in 2-M MeOH solution. DMFC single cells yielded an open-circuit voltage of 0.625 V at 60 °C. Polarization curves indicate that DMFC with OMC-supported Pt85Ru15 catalyst at the anode exhibited the best performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call