Abstract

Wind turbine design is a trade-off between its potentially generated energy and manufacturing cost represented by the area of turbine surface in this research, and both factors are highly influenced by a number of design parameters. In this research, first, a weighted sum of these factors, with a negative weight for power, is assumed as the performance function to be minimized. Then, blade element modeling was performed for class NACA turbines to estimate the generated power based on the effective wind velocity in the area. As a novelty, a new algorithm based on fuzzy logic was proposed to determine the effective wind velocity by using the history of wind velocity in the area. The wind velocity, therefore, the generated power by a wind turbine, is largely dependent on its operation area. In the end, the genetic algorithm with decimal numeric genes was employed to determine the optimal design parameters of the turbine based on the recorded data. This study resulted in a computer program which integrated calculations of fluid dynamics into the genetic algorithm to optimally determine an appropriate turbine (its geometric parameters). The implementation of the proposed method on two different regions ended up with the design of the blade NACA5413 for Manjil and the blade NACA4314 for Semnan, both in Iran.

Highlights

  • People of Iran and Afghanistan circa 200 BC learned how to bridle wind energy in its early technologic form, namely vertical axis windmills, and later around 1300 AD, horizontal axis windmills appeared in Netherlands and the areas around Mediterranean Sea

  • The present study introduces and implements a method based on blade element modeling of turbines, together with the genetic algorithm (GA) optimization with real number genes, and a fuzzy logic-based method to adjust wind velocity, and estimates the effective wind velocity

  • This section is allocated to the implementation of the method previously described so as to find optimal turbine parameters based on the wind velocity date obtained from Semnan and Manjil, Iran

Read more

Summary

Introduction

People of Iran and Afghanistan circa 200 BC learned how to bridle wind energy in its early technologic form, namely vertical axis windmills, and later around 1300 AD, horizontal axis windmills appeared in Netherlands and the areas around Mediterranean Sea. Mosetti et al (1994) used the genetic algorithm to determine an optimal place for turbines so as to maximize total generation power but minimize total cost. Fuglsang and Madsen (1999) suggested a numerical method to optimize wind turbines’ rotors They to minimize energy generation cost, proposed a better design for rotors of equal surface area [3]. In 2002, Benini and Toffolo used a multi-purpose optimization algorithm and aerodynamic calculations of the blade elements for horizontal axis wind turbines. They considered two objectives of annual energy generation and energy generation cost for optimization [4].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.