Abstract

Protein self-association or aggregation is a property of significant concern for biopharmaceutical products due to the potential ability of aggregates to cause adverse toxicological and immunological effects. Thus, during the development of a protein biopharmaceutical, it is important to detect and quantify the level and nature of aggregate species as early as possible in order to make well-informed decisions and to mitigate and control potential risks. Although a deeper understanding of the mechanism of aggregation (i.e., protein-protein interactions) is desirable, such detailed assessment is not always necessary from a biopharmaceutical process development point of view. In fact, the scope of characterization efforts is often focused on achieving a well-controlled process, which generates a product that reliably meets established acceptance criteria for safety and efficacy. In this brief note, we evaluated the utility of size-exclusion chromatography, dynamic light scattering, and analytical ultracentrifugation in their simplest forms, to effectively reveal and confirm the presence of concentration-dependent reversible self-association (RSA) in a monoclonal antibody in the early stages of formulation development. Using these techniques, we also initiated preliminary work aimed at reducing the occurrence of this RSA behavior by varying the pH of the formulation buffer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call