Abstract

Quantum computing is a rapidly growing field attracting the interest of both researchers and software developers. Supported by its numerous open-source tools, developers can now build, test, or run their quantum algorithms. Although the maintenance practices for traditional software systems have been extensively studied, the maintenance of quantum software is still a new field of study but a critical part to ensure the quality of a whole quantum computing system. In this work, we set out to investigate the distribution and evolution of technical debts in quantum software and their relationship with fault occurrences. Understanding these problems could guide future quantum development and provide maintenance recommendations for the key areas where quantum software developers and researchers should pay more attention. In this paper, we empirically studied 118 open-source quantum projects, which were selected from GitHub. The projects are categorized into 10 categories. We found that the studied quantum software suffers from the issues of code convention violation, error-handling, and code design. We also observed a statistically significant correlation between code design, redundant code or code convention, and the occurrences of faults in quantum software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.