Abstract
The spike glycoprotein (S protein), 3-chymotrypsin-like protease (3CL-Pro), and papain-like protease (PL-Pro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus are widely targeted for the discovery of therapeutic compounds against this virus. Dietary flavonoid compounds were proposed as a candidate for safe therapy for COVID-19 patients. Nevertheless, wet lab experiments for high-throughput screening of the compounds are undoubtedly time and cost consuming. This study aims to screen dietary flavonoid compounds that bind to S protein, 3CL-Pro, and PL-Pro of SARS-CoV-2. For this purpose, protein structures of the receptor-binding domain (RBD) of S protein (6M0J), 3CL-Pro (6LU7), and PL-Pro (6W9C) were retrieved from the RCSB Protein Data Bank (PDB). Twelve dietary flavonoid compounds were selected for the studies on their binding affinity to the targeted proteins by global and local docking. The docking and molecular dynamic (MD) simulations were performed using YASARA software. Out of 12 compounds, the highest binding score was observed between hesperidin against RBD S protein (−9.98 kcal/mol), 3CL-Pro (−9.43 kcal/mol), and PL-Pro (−8.89 kcal/mol) in global docking. Interestingly, MD simulation revealed that the complex between 3CL-Pro and RBD S protein has better stability than PL-Pro. This study suggests that hesperidin might have versatile inhibitory properties against several essential proteins of SARS-CoV-2. This study, nevertheless, remains to be confirmed through in vitro and in vivo assays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.