Abstract

Catalytic fast pyrolysis of low sulfonated Kraft lignin was performed under different atmospheric environments such as N2, CH4, and the gas derived from CH4 decomposition (CH4-D). The use of Zn- or Mo-loaded HZSM-5 as catalyst led to a higher pyrolytic oil yield compared to parent HZSM-5 in CH4 and CH4-D atmospheres. The yields of benzene, toluene, and xylenes were increased by the synergistic effects from metal loading, higher H/Ceff ratio, higher acidity, and CH4 activation. The enhanced CH4 activation via metal loading resulted in higher methylation of alkyl moieties and 33% increase in the total yield of benzene, toluene, and xylenes in comparison to parent HZSM-5. A higher H/Ceff ratio of 6 via CH4 decomposition led to the formation of a hydro-pyrolysis environment. Moreover, the CH4-D environment showed H2/CH4 ratio of 0.36 in the product gas which warranted the presence of more H2 under the CH4-D pyrolysis environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call