Abstract
The application of innovative technologies in the manufacture of wind turbines (WT) has produced more efficient WT that can operate successfully in low wind speed (LWS) environments. This technology has not been implemented in many LWS parts of the world due to the paucity of enabling technical information (wind resource availability and wind turbine configuration). This study uses ten years wind speed data from twelve Nigerian cities and their population densities, remote sensing, and the configuration of some commercially available LWS turbines in generating technical information suitable for data-backed decision-making on low-speed turbine deployability, operational conditions, and energy yield at 50 and 400 m. Five different numerical and metaheuristic procedures were randomly selected and utilized to estimate Weibull parameters used in computing wind energy development (WEDP) parameters (effective wind power density, EWPD, and wind available time). WT with low cut-in speeds (∼2 m.s−1) can be installed in all the cities. With the highest EWPD and WEDP ratings (100%) at both 50 and 400 m, Obudu is the most suitable location for the development of wind power infrastructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.