Abstract

This study introduces the concept of non-separable variables, and conducts a super-efficiency slack-based measure (SBM) model considered undesirable output variable to evaluate the economic and technical efficiencies of 15 hydrogen production methods in China. The results show that the average technical efficiency and scale efficiency values of hydrogen production industry are 0.438 and 0.352, respectively, which are relevantly low. The average pure technical efficiency value is 1.090. When the strong carbon constraint is introduced, the average technical efficiency and pure technical efficiency values of hydrogen production industry are increased by about 12.3% and 22.2%, respectively, but the average scale efficiency is reduced by 1.7%. The coal-to-hydrogen production with carbon capture, utilization and storage (CCUS) technology produces the highest technical efficiency, and the technical efficiency value and pure technical efficiency value are 1.435 and 1.679, respectively. The scale efficiency value of hydrogen production from chlor-alkali is 0.951, which is the most effective scale among all measured hydrogen production processes. The methanol-to-hydrogen production also performs great. However, hydrogen production by water electrolysis does not have the advantages of economic nor technical efficiencies. The results of the input-output slack of 15 hydrogen production methods show that the excessive production inputs and carbon dioxide emission are the main reasons for the poor efficiency evaluation results of most hydrogen production methods. The CO2 emission regulation reduces the redundancy of the cost, comprehensive energy consumption and CO2 emissions of 13 hydrogen production processes by more than four times, which affected the technical efficiency and the scale efficiency of hydrogen production industry. It indicates that CO2 emission regulation has improved the economic and technical efficiency of hydrogen production processes in China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.