Abstract

A study of two-layer quasi-geostrophic vortex flow is performed to determine the effect of a current difference between the layers on a vortex initially extending through both layers. In particular, the conditions under which the vortex can resist being torn by the current difference are examined. The vortex evolution is determined using versions of the contour dynamics and discrete vortex methods which are modified for two-layer quasi-geostrophic flows. The vortex response is found to depend upon the way in which the current difference between the layers is maintained. In the first set of flows studied, the current difference is generated by a (stronger) third vortex in the upper layer located at a large distance from the (weaker) vortex under study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.