Abstract

The results of numerical modeling of thinning process in the Earth’s magnetotail current sheet are compared with the model of an anisotropic current sheet in collisionless space plasma. Stability of the current sheet during its evolution is investigated. In the evolution one can distinguish three basic stages: 1) transformation of the initial two-dimensional “isotropic” equilibrium that is well described within the MHD-approximation into a relatively thin current structure; 2) further kinetic evolution, as a result of which the virtually one-dimensional, extremely thin current sheet is formed; 3) relaxation of the system into a new equilibrium that can be stable or unstable. A substorm scenario of transformation of the magnetospheric tail and its transition into the unstable state is suggested. The spontaneously appearing tearing disturbance favors a current sheet disruption. It is shown that the estimate of a tearing mode wavelength, obtained from the model, is in accordance with experimental observations during the explosive phase of substorms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call