Abstract
BackgroundmicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate gene expression. They are found within cells and in body fluids. Extracellular miRNAs have been shown to associate with the surrounding tissues. Therefore, we predicted that miRNAs in tears may contribute to regulate corneal epithelial cell function. However, information on the miRNA expression profile of tears is limited and the specific functions of tear miRNAs for corneal epithelial cells are still unknown. To study the role of tear miRNAs, we determined which miRNAs are highly expressed in tears and examined the involvement of miRNAs in corneal epithelial cell viability.MethodsmiRNAs extracted from monkey tears and sera were subjected to microarray analysis. miRNAs of which expression levels were higher in tears than in sera were selected, and their expression levels were quantified by quantitative polymerase chain reaction (qPCR). To examine miRNA function, mimics and inhibitors of miRNAs were transfected into human corneal epithelial (HCE-T) cells and incubated for 24 or 48 h. After transfection of miRNA mimics and inhibitors, the viability of HCE-T cells was measured using the water soluble tetrazolium salt (WST) assay, and microarray analysis and qPCR were performed using total RNA extracted from HCE-T cells. siRNAs of the candidate targets for miR-203 were transfected into HCE-T cells and the WST assay was performed. To determine a direct target gene for miR-203, a dual luciferase reporter assay was performed in HCE-T cells using a luciferase reporter plasmid containing 3′-UTR of human IGFBP5.ResultsMicroarray and qPCR analyses showed that miR-184 and miR-203 were expressed significantly more highly in tears than in sera (165,542.8- and 567.8-fold, respectively, p < 0.05). Of these two miRNAs, transfection of a miR-203 mimic significantly reduced the viability of HCE-T cells (p < 0.05), while a miR-203 inhibitor significantly increased this viability (p < 0.05). miR-203 mimic downregulated insulin-like growth factor-binding protein 5 (IGFBP5) and nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1), while miR-203 inhibitor upregulated these two genes. Transfection of IGFBP5-siRNA decreased the viability of HCE-T cells. miR-203 mimic significantly diminished the luciferase reporter activity.ConclusionsIn this study, we identified miRNAs that are highly expressed in tears, and the inhibition of miR-203 increases the viability of corneal epithelial cells. Our results suggest that miR-203 contributes to regulating the homeostasis of corneal epithelial cells.
Highlights
MicroRNAs are small noncoding RNAs that negatively regulate gene expression
We investigated the contribution of miRNAs highly expressed in tears to the viability of corneal epithelial cells, and explored its target genes
The luciferase reporter activity was significantly diminished after the transfection of miR-203 mimic compared with transfection of negative control of miRNA (Fig. 4E). These results demonstrated that miR203 negatively regulates the proliferation of human corneal epithelial (HCE-T) cells by targeting insulin-like growth factor-binding protein 5 (IGFBP5)
Summary
MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate gene expression. They are found within cells and in body fluids. We predicted that miRNAs in tears may contribute to regulate corneal epithelial cell function. Information on the miRNA expression profile of tears is limited and the specific functions of tear miRNAs for corneal epithelial cells are still unknown. To study the role of tear miRNAs, we determined which miRNAs are highly expressed in tears and examined the involvement of miRNAs in corneal epithelial cell viability. The corneal epithelium, which is the outermost layer of the cornea, is replaced approximately every 2 weeks, and corneal wound healing is a highly regulated process that requires the proliferation and migration of epithelial cells. It is clinically important to develop a new method for treating corneal epithelium disorder
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.