Abstract

The security of vehicular ad hoc networks (VANETs) has been receiving a significant amount of attention in the field of wireless mobile networking because VANETs are vulnerable to malicious attacks. A number of secure authentication schemes based on asymmetric cryptography have been proposed to prevent such attacks. However, these schemes are not suitable for highly dynamic environments such as VANETs, because they cannot efficiently cope with the authentication procedure. Hence, this still calls for an efficient authentication scheme for VANETs. In this paper, we propose a decentralized lightweight authentication scheme called trust-extended authentication mechanism (TEAM) for vehicle-to-vehicle communication networks. TEAM adopts the concept of transitive trust relationships to improve the performance of the authentication procedure and only needs a few storage spaces. Moreover, TEAM satisfies the following security requirements: anonymity, location privacy, mutual authentication, forgery attack resistance, modification attack resistance, replay attack resistance, no clock synchronization problem, no verification table, fast error detection, perfect forward secrecy, man-in-the-middle attack resistance, and session key agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.