Abstract

First-year physics laboratories are often driven by a mix of goals that includes the illustration or discovery of basic physics principles and a myriad of technical skills involving specific equipment, data analysis, and report writing. The sheer number of such goals seems guaranteed to produce cognitive overload, even when highly detailed “cookbook” instructions are given. Recent studies indicate that this approach leaves students with a poor conceptual understanding of one of the most important features of laboratory physics and of the real world of science, in general: the development of an understanding of the nature of measurement and its attendant uncertainty1. While students might be able to reproduce certain technical manipulations of data, as novice thinkers they lack the mental scaffolding that allows an expert to organize and apply this knowledge.2,3 Our goal is to put novices on the path to expertise, so that they will be able to transfer their knowledge to novel situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.