Abstract

Microfluidics allows the manipulation of small quantities of reagents in a high-throughput manner and is therefore highly amenable to single cell characterization and more generally to digital analysis, with applications in fields as varied as genomics, diagnostics, directed evolution, and drug screening. The growing place of microfluidics in biology laboratories encouraged us to develop a teaching method where advanced undergraduate or first-year graduate-level students are taught to fabricate droplet-based microfluidic devices, characterize them, and finally use them to perform a digital analysis of bacterial samples based on a phenotypic marker.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.