Abstract


 
 
 The proliferation of large, complex data spatial data sets presents challenges to the way that regional science—and geography more widely—is researched and taught. Increasingly, it is not ‘just’ quantitative skills that are needed, but computational ones. However, the majority of undergraduate programmes have yet to offer much more than a one-off ‘GIS programming’ class since such courses are seen as challenging not only for students to take, but for staff to deliver. Using evaluation criterion of minimal complexity, maximal flexibility, interactivity, utility, and maintainability, we show how the technical features of Jupyter notebooks—particularly when combined with the popularity of Anaconda Python and Docker—enabled us to develop and deliver a suite of three ‘geocomputation’ modules to Geography undergraduates, with some progressing to data science and analytics roles.
 
 

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.