Abstract

We here introduce Ensemble Optimizer (EnOpt), a machine-learning tool to improve the accuracy and interpretability of ensemble virtual screening (VS). Ensemble VS is an established method for predicting protein/small-molecule (ligand) binding. Unlike traditional VS, which focuses on a single protein conformation, ensemble VS better accounts for protein flexibility by predicting binding to multiple protein conformations. Each compound is thus associated with a spectrum of scores (one score per protein conformation) rather than a single score. To effectively rank and prioritize the molecules for further evaluation (including experimental testing), researchers must select which protein conformations to consider and how best to map each compound’s spectrum of scores to a single value, decisions that are system-specific. EnOpt uses machine learning to address these challenges. We perform benchmark VS to show that for many systems, EnOpt ranking distinguishes active compounds from inactive or decoy molecules more effectively than traditional ensemble VS methods. To encourage broad adoption, we release EnOpt free of charge under the terms of the MIT license.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.