Abstract

Hands-on laboratory skills play a vital role in providing mechanical engineering students with a sound understanding of the scientific fundamentals and their application in solving real-life engineering problems. This paper describes a hands-on laboratory thermofluid project which is taught as part of a one-semester, junior-level mechanical engineering course titled Core Measurements Laboratory. The experiment focuses on characterization of heat transfer from a cartridge-heated, isothermal cylinder inside a circular enclosure, by conduction, natural convection and radiation. The project consists in the design and fabrication of the test facility, data acquisition and comparison of experimental results with analytical predictions, with a formal report submitted on completion. The project is undertaken by a team of four students over a five-week period. Emphasis is placed on highlighting potential discrepancies between measurement and analytical predictions, which are inherent in the test configuration considered, reflecting realistic engineering situations. Sample measurement and analysis results are reported. The teaching strategy employed to integrate fundamental theories with hands-on experiences is described. The effectiveness of the laboratory project in enhancing student learning of heat transfer, engineering analysis of discrepancies between predictions and measurements, and project management skills was demonstrated by monitoring student performance improvements over the duration of the project.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call