Abstract

Plants convert carbon dioxide into sugars using the energy of sunlight. Absorbed light unused for conversion is dissipated primarily as heat with a small fraction re-emitted as fluorescence at longer wavelengths. One can use the latter to estimate photosynthetic activity. The illumination of intact leaves with strong light after keeping them in dark for tens of minutes results in a rapid increase followed by a slow decay of fluorescence emission from the fluorophore chlorophyll-a, called the Kautsky effect. This paper describes a laboratory practice that introduces students of physics or engineering into this research field. It begins with the spectral measurement of the fluorescence emitted by a plant leaf upon UV excitation. Then it focuses on the red and far-red components of the fluorescence emission spectrum characteristic to the chlorophyll-a molecule and presents an inexpensive demonstration of the Kautsky effect. As researchers use more complex measurement techniques and tools, the practice ends up with the demonstration of an intelligent fluorosensor, a compact tool developed for plant physiological research and horticulture applications together with a brief interpretation of some important fluorescence parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call